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Learning Objectives: 

 

In this module we continue to study the special theory of relativity.  From 

this module students may get to know about the following: 

1. The light cone and the proper time of an event, a Lorentz invariant 

quantity. 

2. The law of addition of velocities in relativity, i.e., the relation between 

the velocities of a particle as viewed from two different frames of 

reference. 

3. Introduction to four vectors – the velocity and energy-momentum 

four-vectors. 

4. The celebrated Einstein’s mass-energy relation. 

5. A mathematical description of the properties of space-time in special 

theory of relativity and introduction to four-tensors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

I4. Theory of Relativity - II 
 

In the last module we had begun our study of the Einstein’s special theory of relativity.  We had 

described the experimental basis of the need for the special theory and introduced the two 

Einstein’s basic postulates of special relativity.  We had then “derived” the Lorentz 

transformations and briefly discussed some of its salient consequences.  Finally we had briefly 

introduced the concept of four vectors. 

 

In this module we continue with the theory of relativity, discuss some further consequences of 

Lorentz transformations, and study in detail the space-time structure of special relativity. 

 

15.1 Light Cone and Proper Time 
 

A useful concept in special relativity is that of light cone and space-like and time-like intervals 

between two events.  Consider the figure shown below in [SEE FIGURE 11.3 Jackson Edition 

2] which the time axis ct is vertical and the space axes are perpendicular to it.  For simplicity we 

show only the x-axis. At time t=0, a particle is at the origin.  Because no particle or physical 

system can have speed greater than the speed of light, the space-time domain can be divided into 

three regions by a cone, called the light cone whose surface is specified by the equation  

 

  022222  tczyx .      (4) 

 
In the diagram of course it appears as a pair of straight lines. Light signals emitted from the origin 

at t = 0 would travel along these lines in the figure.  But any material system has a speed less than 

c, and hence, as time progresses, it would trace out a path, called its world line.  This world line 

will lie inside the upper half cone.  In fact, since the speed of the particle at any instant is given 

by the cotangent to this curve and speed of the particle cannot exceed c, at every instant the angle 

made by the tangent to the curve must be greater than 450.  Since the path of the particle must lie 

in the upper half cone for t > 0, that region is called the future.  Similarly, the particle must have 

reached the origin at t = 0 by some path which must lie in the lower half-cone called the past.  

The shaded region in the figure for which 
22222 tczyx   is called elsewhere.  A system at 

O at t=0 can never reach or come from a point in the elsewhere region, because for that to happen 

its speed will have to exceed c at some time or the other.   

 

This division of the space-time into past, future and elsewhere regions can be understood from the 

concept of invariant separation or interval between two events ),( 11 xt


 and ),( 22 xt


 is defined as  
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For two infinitesimally close events, the infinitesimal interval is defined by 

 

  
2222 xddtcds
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 .       (6) 

 

In a different frame of reference, the coordinates of the two events would be )','( 11 xt


 and 

)','( 22 xt


, but the interval between the two would be same: 
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For any two events, there are three possibilities: 0,0,0
2
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12  sss . 

 

0)(
2

12 si .  In this case the events are said to have a time-like separation.  We can always find a 

frame of reference by a Lorentz transformation in which '' 21 xx


 .  Then  
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12  ttcs  

 

In this frame the two events occur at the same point ( '' 21 xx


 ) but are always separated in time.  

For, if a frame of reference could be found in which the two events are simultaneous, then in that 

frame  
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which is not possible since 
2

12

2

12 ' ss  , and 0
2

12 s .  In the figure for two such events if one 

point is at the origin the other is in the past or future region. 

 

0)(
2

12 sii . In this case the events are said to have a space-like separation.  Now it is always 

possible to find a frame of reference in which '' 21 tt  , since then  
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However, now it is not possible to find a frame in which '' 21 xx


 , for if such a frame could exist, 

then in that frame 
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This is not possible since 
2

12

2

12 ' ss  , and 0
2

12 s .  Two such events can occur at the same time 

but never at the same point – the separation is space-like. In the figure for two such events if one 

point is at the origin the other has to be in the elsewhere region. 

 



 

 

0)(
2

12 siii .  In this case the events are said to have a light-like separation.  Two such events 

can be connected only by a light signal.  If one point lies at the origin, the other must lie on the 

light cone. 

 

The division of the separation between two events into three categories is Loretz invariant, i.e., it 

is independent of the frame of reference, since the separation depends on 
2

12s , which has the 

same value in all frames; and thereby lies its importance.  An event which is in the past (future) of 

another event in one frame is in the past (future) in all frames.  Thus past (future) are absolute 

past (future).  If two events have a space-like separation in one frame then the separation is space-

like in all frames.  Two such events cannot be causally connected as all interactions propagate 

with speeds not exceeding the speed of light. 

 

15.1.1 Proper time 
 

Consider a particle moving with velocity )(tu


in some inertial frame K .  The square of the 

infinitesimal invariant interval ds is 
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Consider the frame of reference in which the particle is instantaneously at rest. In this frame  
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or 
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The time τ is called the proper time of the particle.  It is the time as seen in the rest-frame of the 

system.  It follows on integrating the above equation that a proper time interval (τ2 - τ1) - say time 

of travel of the particle in the rest frame - will appear in the moving frame K  as time interval 
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These equations also express the phenomenon of time dilatation, applied to a system which may 

not be moving with uniform velocity.  Time interval d  in the rest frame appears as an interval 

 dd )(  in the moving frame; in other words a moving clock runs slower than a stationary 

one. 

 

15.2  Addition of velocities 
 

The Lorentz transformations (1) or inverse transformation (2) can be used to obtain law of 

addition of velocities.  Let a particle be moving with speed 'u


 in the frame 'K , which itself is 

moving with a speed v in the x direction with respect to a frame K .  Then from (2), for 

infinitesimal intervals we obtain 



 

 

 

 )''( 100 dxdxdx   ,   ),''( 011 dxdxdx    '22 dxdx  ,    '33 dxdx    (11) 

 

If the velocity of the particle in the K  frame is denoted by u


, we have 
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We see that the component parallel to the relative speed of two frames transforms differently than 

the transverse components.  If we denote the parallel and transverse components by subscripts || 

and   respectively, then 
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Taking the simple case of all velocities in the x-direction, we have 
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Consider various cases of interest.  If both the speeds 'u  and v are small compared to the speed of 

light, the denominator can be replaced by unity, and we recover the well-known Newtonian 

transformation law for velocities 

 

  vuu  '  

 

Einstein relativity approaches Newtonian relativity for “small” velocities.   

 

Putting 'u =c, v =c, or both equal to c, we obtain u=c.  Thus c is indeed the upper limit for all 

speeds, and c cannot be achieved by any particle or system.  For a beam of light produced by a 

source that is stationary in 'K , 'u  equals c, and so does u from above.  Thus the speed of light is 

the same in all frames independent of the motion of the source.  This of course was the starting 

point of the Einstein’s relativity; we simply recover the same result indicating the internal 

consistencies of the formalism. 

 



 

 

15.3 Velocity and energy-momentum four vectors 
 

As we have said earlier, we anticipate, in analogy with ordinary vectors, the existence of physical 

quantities that behave like space-time coordinates under Lorentz transformations; we called such 

quantities four vectors.  The coordinate 0x  is the- component of the four vector, whereas 

),,( 321 xxx  are the space components.  If we look at the structure of equations (13) and (14), we 

realize that law of transformation of velocities is not that of the space component of a four vector. 

The reason is that in 
dt

xd
u



 , xd


 is the space component of a four vector but dt is not invariant 

under Lorentz transformation; it is time component of a four vector.  If we have a related quantity 

which is invariant under Lorentz transformation, then u


 will transform like xd


.  We have 

already found this quantity, viz., the proper time interval d , which as we have already seen is a 

“Lorentz invariant”.  Thus dividing by d  instead of dt we can construct a four vector from 

),( 0 xx


: 
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Together the two can be written as  
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15.3.1 Energy-momentum four vector 

 

Let us try to form another four-vector starting with the velocity four-vector, viz.,  

 

  
 mUP  .        (17) 

 

Analysing the space and time components of this four-vector, we have  

 

  cmmUPumUmP   00;


. 

 

The vector P


 is like the nonrelativistic momentum, except that the mass is multiplied by the 

factor γ.  Thus we can regard m  as the effective mass of the particle: 
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So the mass of a moving particle gets replaced by 

2
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1
c

u

m



- a moving particle gets heavier as its 

speed increases.  The “ordinary” mass is usually written as m0 and called the rest mass of the 

particle.  The mass of the particle having velocity v is 0)( mvm  . 

 

Notice that   )(vm  as cv  .  Thus a material particle moving with the speed of light 

would have infinite mass; it is another way of saying that no material particle can move with the 

speed of light. 

 

15.4  Einstein’s mass-energy relation 
 

Let us now look at the time component of the four vector Pμ, P0=mγc, in fact at cP0, which has 

dimensions of energy, E.  Expanding γ in powers of v2/c2, we have 
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so that  
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The second term in this expansion is just the usual kinetic energy of a particle in Newtonian 

mechanics.  The first term is a constant, independent of the velocity of the particle and present 

even when the particle is at rest.  It is this identification that led Einstein to boldly suggest that a 

particle of mass m has energy  
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whether it is at rest or in motion.  Thus a particle at rest has energy  

 

  
2mcE          (20) 

 

often called the rest energy of the particle.  This is the celebrated Einstein’s mass-energy 

equivalence relation.  It says that mass and energy are equivalent and interchangeable. 

 

15.5  Mathematical Properties of Space-Time in Special Relativity 
 

We have introduced the concept of four vectors in a heuristic manner.  We now develop the 

properties of space-time manifold in a more consistent manner.  Three-dimensional rotations in 



 

 

classical and quantum mechanics can be discussed in terms of group of transformations of 

coordinates in space that leave the norm of the vector x


 invariant.  In fact such transformations 

also include translations and reflections.  In the special theory of relativity the relationship 

between coordinates in different inertial frames are provided by Lorentz transformations that 

leave the interval 
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invariant.  The group of transformations that leave s2 invariant is called the homogenous Lorentz 

group.  This includes the Lorentz transformations and also include the ordinary rotations, since 

within one given frame of reference rotations will leave not only the norm of x


 invariant but also 

the interval s2. 

 

That space and time are homogenous and isotropic is one of the most sacrosanct principles of 

nature.  It means there is no preferred direction or position in space.  It means the results of any 

experiment should be independent of the coordinates chosen.  It further implies that the left hand 

side and the right hand side of an equation should transform in the same manner under rotations, 

so that an equation valid in one coordinate system will be valid in any other rotated system.  The 

transformation of coordinates under rotations can be written as a linear transformation: 
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Since the norm of x


 must be invariant, it leads to the following relation among the coefficients 

aij: 

 

  



3

1k

ijjkik aa          (23) 

 

Here ij  is the kronecker delta symbol and has the value one if the indices are equal and zero 

otherwise. 

 

We next define a vector as any set of three physical quantities that behave under rotations like the 

coordinates xi.  Likewise we define a tensor of rank 2 as any set of nine physical quantities that 

transform under rotations in the following manner: 
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One can extend this definition to tensors of higher ranks as well. 

 

The notation can be much simplified by using Einstein summation convention.  Under this 

convention: 

 

(i) An index that appears once in an expression is a free index and represents a set of 

equations for its three values.  Thus two free indeces will represent a set of nine equations and so 

on. 



 

 

 

(ii) An index that appears twice in an expression is understood to be summed over. 

 

(iii) No index can appear more than twice in an equation. 

 

Needless to say, free indices must match in every term of an expression and one repeated index 

can be replaced by another.  Thus the above equations can be written as 

 

  jiji xax '         (25) 

 

  ijjkik aa          (26) 

 

  kljlikij TaaT ' .        (27) 

 

After this brief digression to recall some of the well-known results from rotations in three-

dimensional space, let us get back to our four dimensional space-time continuum. 

 

From the first of the Einstein’s postulates the mathematical equations expressing the laws of 

nature must be the same in all inertial frames of reference, i.e., they must be invariant in form 

under Lorentz transformations, or they must be covariant.  In other words every term on the right 

hand or left hand side of an equation must transform in the same manner under Lorentz 

transformations.  In analogy with the case of rotations in ordinary space, this implies that such 

equations must be expressed by relations among four-scalars, four-vectors, four-tensors etc.  Just 

as ordinary scalars, vectors and tensors are defined by their transformation properties under 

rotations, four scalars, vectors and tensors etc. are defined by their properties under Lorentz 

transformations. 

 

However, there is a difference also between the two cases.  In the norm of the position vector all 

terms appear with the same (positive) sign, whereas in the interval which is the corresponding 

quantity in our four dimensional case, one of the terms appears with an opposite sign.  This 

makes the space non-Euclidean with its accompanying complications.   

 

To begin with we keep our discussion sufficiently general and do not restrict ourselves to a 

specific transformation law from the unprimed coordinates ),,( 32,10 xxxx  to primed 

coordinates )','','( 32,10 xxxx . We suppose that there is a well-defined law of transformation 

between the two: 

 

  .3,2,1,0);,,,('' 3210   xxxxxx      (28) 

 

This transformation is invertible; the Jacobian of the transformation is not equal to zero.  Thus 

one can, in principle, solve these set of equations to obtain 

 

  .3,2,1,0);',',','( 3210   xxxxxx     (29) 

 

Scalars, vectors and in general tensors of certain rank are defined by their transformation 

properties.  A (Lorentz) scalar, or a tensor of rank zero is a single quantity whose value is not 

changed by the transformation.  The interval ds2 is obviously one such quantity.  (So are the 

charge of a particle and the rest mass of a particle.) 



 

 

 

For tensors of rank one, or vectors, two kinds have now to be distinguished.  A contravariant 

vector 
A , is a set of four quantities which transform according to the rule 
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In this equation the derivatives are evaluated from equation (28).  Just to remind you once, the 

repeated index β is summed over; the index α is free; thus the above equation represents a set of 

four equations: 
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In a contravariant vector, the indices appear as superscripts. 

  

A covariant vector or tensor of rank one, is a set of four quantities which transform according to 

the rule 
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or explicitly by 
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In the covariant case the derivatives are evaluated from equation (29) which is the inverse 

transformation of (28) and express the coordinates xα in terms of 
'x .  The indices in a covariant 

vector appear as subscripts. 

 

If the law of transformation (28) is linear, then the components ),,,( 3210 xxxx  do indeed form 

components of a contravarient four vector.   

 

A generalization to tensors of higher order in now clear.  A contravariant tensor of rank two 
F  

is a set of sixteen quantities that transform according to  
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A covariant tensor of rank two G  is a set of sixteen quantities that transform according to 
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However, we can now have a mixed tensor of rank two 
'H  which transforms according to 
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Generalization to even higher ranks of contravariant, covariant and mixed tensors is now 

straightforward. 

 

The inner or scalar product is defined when one vector is contravariant and the other covariant.  

Thus if A is contravariant and B covariant, their scalar product is defined as  
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Just as in the case of three vectors, the scalar product of two vectors is a scalar, the inner product 

of two four vectors as defined above is also an invariant: 
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Now using the chain rule of partial differentiation 
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Here 
  is the Kronecker delta function in four dimensions: unity if the two indices are same 

and zero otherwise.  Thus  
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You can easily verify that a similar definition of inner product with both vectors either 

contravariant or covariant do not yield a scalar: 
 BABA '' .   

 

15.5.1 The Metric Tensor of Special Relativity 

 

So far our discussion was general (and could be applied even to general relativity). We now 

specialize to the space-time of special relativity.  In this case the invariant interval is given by 

equation (1).  In differential form the invariant interval that defines the norm in our space is given 

by 
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If we write our norm or metric as 
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then for the space-time of special relativity the metric tensor is diagonal, and is given by 

 



 

 

  1,1 33221100  gggg .     (42) 

 

We can define the corresponding contravariant metric tensor 
 gg   numerically.  The 

contraction of the contravariant and the covariant metric tensors gives the Kronecker product in 

four dimensions: 
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Very often it is convenient to write g  in a matrix form: 
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






1000

0100

0010

0001


 gg      (44) 

 

In matrix form the invariant length is 

 

    2

3

2

1

0

3210 )(

1000

0100

0010

0001
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x

x

x

x

xxxxxgx 

















































 

 

15.5.2 Raising and lowering of indices 

 

The metric tensor g  and 
g  can be used for the operation of lowering and raising indices of 

a given tensorial quantity.  For example given a contravariant vector 
A  we use metric tensor to 

define the corresponding covariant vector A by 

 

  


 AgA          (45) 

 

In particular 

 

  


 xgx          (46) 

 

If the components of 
A  are ),,,( 3210 AAAA , then those of A  are 
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

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
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
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




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




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


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
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A

A

A

A

A

A

A

 



 

 

 

In other words, 

 

  
3

3

2

2

1

1

0

0 ;;; AAAAAAAA  .  (47) 

 

Thus with every “natural” contravariant four vector is associated a covariant four vector.  The two 

have time components same but space components opposite in sign.  Thus ),( 0 xxx



 is a 

natural contravariant; its covariant “partner” is ),( 0 xxx


 . 

 

15.5.3 Contraction of indices 

 

The inner or scalar product of two vectors is a special case of contraction of two indices. Using 

the metric tensor, this product can be put in different forms: 

 

  BAABBAgBAgBABA


.. 00  






   (48) 

 

The contraction can be applied to any two indices, one of which is contravariant and the other 

covariant.  For example, from the tensor 
T , we obtain the scalar 

 

  



 TggT  .        (49) 

 

Whenever two indices are contracted, the rank of a tensor is reduced by two, since the number of 

free indices is reduced by two. 

 

15.5.4 The differential operator 

 

Consider now the partial derivative operator with respect to xα and x . The transformation 

properties of these operators can be established by using the rules of implicit differentiation.  For 

example we have 
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x 
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
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
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



























.  (50) 

 

By comparison with equation (32) for transformation of covariant vectors, we see that 

differentiation with respect to a contravariant component of the coordinate vector transforms as a 

component of a covariant vector.  Thus 
'x  is contravariant but 

'x


 is a covariant operator.  

Similarly differentiation with respect to a covariant component gives a contravariant operator: 
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
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Alternatively, operating on both sides of the above equation with 
'g  (while using the prime 

coordinates) yields a gradient operator that transforms as a contravariant tensor, since, using 

equation (14) [







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
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' ] and (50) above, we have 
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




xx
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








'
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 We therefore employ the notation 

 

  ),(
0














xx


       (51) 

 

  ),(
0














xx
        (52) 

 

The quantity 
  is the four-dimensional generalization of gradient.  Similarly we have the four-

divergence of a four-vector: 

 

  A
x

A
AA


.

0

0





 




      (53) 

 

Finally, the invariant four-dimensional Laplacian operator is defined by contraction of the 

differential operator: 

 

  □=
2

0

2

2 







x



       (54) 

 

15.5.5 Matrix representation of Lorentz transformations 

 

The specific Lorentz transformation between two frames K  and 'K , when 'K  is moving along 

the positive x-axis is given by  
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In our present notation this takes the form  

 

  

33
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101

100

'

'

)('

)('

xx
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











 

 

or if we represent the Lorentz transformation by  , 

 

  



 xx ' ,  

 

the matrix   is given by 

 

  
























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0100

00

00





     (55) 

 

The inverse transformation from primed to unprimed coordinates is given by the inverse matrix 

 

  



 xx )( 1 , 

 

  




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









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1




     (56) 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Summary 
 

1. In this module the study of the special theory of relativity was 

continued. 

2. The light cone and the proper time of an event are discussed.  The 

proper time of an event is a Lorenz invariant quantity unlike the usual 

time which is different in different frames of reference. 

3.  The law of addition of velocities, i.e., the relation between the 

velocities of a particle as viewed from two different frames of 

reference is derived from the Lorentz transformations.  The law of 

addition that we get differs profoundly from the usual law of addition 

of velocities which follows from the Galilean transformations.  The 

law clearly demonstrates that the velocity of light is the upper limit to 

the velocity achievable by any material particle. 

4. The concept of four-vectors is introduced and the velocity and energy-

momentum four-vectors are discussed. 

5. The celebrated Einstein’s mass-energy relation is derived. 

6. A mathematical description of the properties of space-time in special 

theory of relativity is given.  This leads to two kinds of four-vectors, 

the contravariant and the covariant, because of the peculiar structure 

of space-time in Einstein’s relativity. The idea of four vectors is 

extended to four-tensors much on the line of ordinary vectors but with 

some clear difference. 

 


